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A B S T R A C T

The extent to which available data is continuously growing in terms of volume is forcing organizations to
contend with and seek to resolve the so-called Big Data Challenge. Big data comes or can be structured in the
form of networks from which information can be extracted via statistical and computational tools. The results of
such investigations can be generally referred to as network outcomes. Such outcomes, despite being often
characterized by a inner ambiguity, need to be well understood and interpreted in order to exploit the po-
tentialities of network data, especially in practical situations. For this reason, addressing the ambiguity of
network outcomes becomes a key issue in business-related environments, where the possibility of rapidly in-
terpreting and properly exploiting network data can positively affect performances. In this paper, we propose a
framework to face ambiguity of network outcomes that, by means of specific solutions, allows practitioners to
successfully interpret and exploit the obtained outcomes.

1. Introduction

Ambiguity – the quality of being open to more than one inter-
pretation – is a source of complexity. It strongly affects the way in
which we make decisions regime uncertainty as well as the confidence
we have in the outcome of such decisions. Ambiguity derives from
having a limited knowledge of the process that generated the outcome
(Einhorn & Hogarth, 1985) thus many real-world systems, of which
knowledge is indeed limited, can be deemed ambiguous in some of their
aspects. Building on the fact that ambiguity affects various elements of
organizational settings, numerous scholars have approached such an
issue through the lens of business practices and management. For in-
stance, the role of ambiguity has been linked to the efficiency of the
decision-making process (Einhorn & Hogarth, 1986; Frisch & Baron,
1988), to the conflict among roles within organizations (Kahn, Wolfe,
Quinn, Snoek, & Rosenthal, 1964) and to the effectiveness of leadership
(Pfeffer, 1977). The concept of ambiguity has also been studied in
conjunction with business performance (Powell, Lovallo, & Caringal,
2006), taking into account the role of causal ambiguity; the condition
under which neither the firm nor its rivals can determine the causes of
firm performance. More recently, research on the role of ambiguity has
shifted towards problems related to uncertainty in financial systems
(Epstein & Schneider, 2008). In light of the benefits that insights from
complexity theories can bring to organizations (Burnes, 2005), this
paper explores the role of ambiguity from a complex systems perspec-
tive by providing practical solutions to such issues commonly related to
the concept of ambiguity.

Considering a complex system as the outcome of a generative pro-
cess, of which in general we know only a limited number of drivers, it is
reasonable to suggest that complex systems display, through their very
nature, a certain level of ambiguity. A well-known example of a com-
plex system is represented by networks through which we are able to
schematically represent and model a vast portion of real-world systems
(Newman, 2010). The usefulness of networks has been proved in nu-
merous different domains, including business-related environments
(Håkansson & Ford, 2002), and there has been extensive research into
networks of social relations and industrial relations, as well as networks
representing relationships of a more technical nature.

Networks are made up of nodes interacting with one another
through links that, realizing different patterns of connections, turn
networks into relatively complex objects to analyze. The complexity of
networks is enhanced by an increasingly simplified and streamlined
way to collect, process and store large amount of data. Furthermore, the
fact that current available networks are continuously growing – e.g., in
terms of size or temporal resolution – has caused many to adopt the
term big data when describing them. As such, understanding, exploiting
and integrating complex networks within tools of business intelligence
and analytics is pertinent for those companies and organizations hoping
to resolve the challenges posed by big data (Sivarajah, Kamal, Irani, &
Weerakkody, 2017); a process that requires a wide body of knowledge,
skills and expertise that is still under development in the field of
complex networks. Indeed, being that recent networks orders of mag-
nitude are larger than those available a few years ago (Wasserman &
Faust, 1994), the classic tools conceived for social network analysis
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suffer from computational issues and of lack of explanatory power.
Furthermore it is generally impossible to obtain information from a
network by eyesight alone or to compute network measures by hand.
For this reason, the investigation of complex networks is conducted via
specific measures that, acting as summary statistics, are helpful in
supporting decisions related to networked systems. Any measure that
derives from the network topology, including distributions, summary
statistics and results of algorithms, can be considered and is here re-
ferred to as network outcome.

Considering that networks, being complex systems, are character-
ized by a certain level of ambiguity, in this paper we argue that such
ambiguity can be inherited by network outcomes causing issues of in-
terpretability even when we have complete knowledge about the
system that generated the outcome. Indeed, when referring to network
outcomes, ambiguity has to be considered as a problem of unequivocal
interpretability of the obtained outcome in relation to the network it-
self. Such a possibility for interpretative spaces caused by ambiguity
may entail serious issues for companies and organizations that are ruled
by the “management by measurement” practice (Noordegraaf & Abma,
2003) as well as for those who adopt performance-oriented decisions.
Considering that networks are now a very popular, required and
available scheme of representation and analysis, it becomes crucial to
point out the risks of ignoring inner ambiguity when making decisions
based on measurement and analytics.

Discussing the ambiguity of network outcomes aims at raising
awareness about the potential flaws and false positives related to such
popular tools and to provide innovative solutions.

For instance, a company offering a vehicle- sharing service may
easily profile its customers (or discover criticalities about its vehicles)
by building different kinds of networks using data from social media or
by exploiting data about geographical proximity of customers. In such a
context, while using network outcomes as an advising tool for sup-
porting decisions is common practice, ignoring their limitations and
potential ambiguity may result in incorrect interpretation of the data
and consequently in wrong decisions. This aspect raises an important
issue especially for relatively vulnerable companies such as start-ups,
where the exploitation of data-driven solutions and business in-
telligence solutions is more common.

The paper is structured as follows: Section 2 discusses the concept of
ambiguity related to different types of network outcomes. Section 3
presents the data. Section 4 quantitatively discusses the issues related to
the ambiguity of network outcomes at node level and presents a method
for addressing such ambiguity. Section 5 quantitatively discusses the
issues related to the ambiguity of network outcomes at network level
and shows how embedding external information in the structure of the
network can provide a clearer interpretation of the observed outcome.
Finally, Section 6 presents conclusions and directions for future works.

2. Ambiguity of network outcomes

Network outcomes can be considered at different levels and they
can provide information either about the single element (node-level
measures) or about the whole system (network-level measures). Both
kinds of measures, due to different reasons, may be deemed hard to
interpret (ambiguous) and, if so, may negatively affect the process of
decision making and the management of the considered system. Indeed,
in the case of large networks, node-level measures may be hard to in-
terpret because of the presence of thousands of nodes or because of the
relatively small difference between two nodes displaying different va-
lues of the considered measure. In order to address this issue, a common
practice inherited from the study of relatively small networks in the
field of social networks analysis (Wasserman & Faust, 1994), is to
consider only a smaller set of values of node-level measures by means of
rankings. This practice limits the analysis to an arbitrarily small fraction
of the nodes (commonly top 10, 20, 100), dropping important pieces of

information. Another common practice is to resume node-level mea-
sures into distributions that, despite their undeniable usefulness, in-
evitably provide aggregate information (Newman, 2010). These kind of
practices related to node-level measures may introduce arbitrariness in
terms of interpretation and create a labile ground for decision making
by introducing arbitrariness within a system already characterized by
inner ambiguity.

Differently from the case of node-level outcomes, the problems re-
lated to the interpretability of network-level outcomes are somewhat
more complex to tackle. When we take into account such kind of
measures we are basically resuming the whole network by means of a
quantity that only partially explains the underlying structure of inter-
connections. Such a problem is typical in statistics when, for example,
we observe the same value of the correlation coefficient for very dif-
ferent distributions of the data (Anscombe, 1973). As explained in Peel,
Delvenne, and Lambiotte, 2018, the exact same problem can be ob-
served in the case of network-level measures such as the assortativity
coefficient (Newman, 2003). Additionally, certain-network level mea-
sures (e.g., modularity that is a quality function associated to the pro-
cess of network clustering) are outcomes of optimization processes and
thus suffer from algorithm dependency (Fortunato & Hric, 2016) or, as
explained in Good, De Montjoye, and Clauset, 2010, display different
configurations that provide the same or very similar outcomes (i.e.,
degenerate and near-degenerate solutions). Finally, network-level
measures may present further problems of interpretability, by dis-
playing constraints determined by the “rigidity” of the underlying
structure of conncetions that make them hard to compare against one
other (Cinelli, Ferraro, & Iovanella, 2017; Cinelli, Peel, Iovanella, &
Delvenne, 2019). Therefore, when supporting decision making, net-
work-level measures also raise issues of interpretability, resulting in
potential decisions that may be far from displaying the expected effects.

In order to ease the process of decision making and to provide
practitioners with tools that can help in interpreting network outcomes,
we propose different solutions applicable in the case of both node-level
and network-level outcomes. In the case of the former, we aim to re-
solve the issue of hardness of interpretation by adopting a non-para-
metric method capable of categorizing classes of important nodes and
thus reducing the arbitrariness of commonly used rankings. The divi-
sion into a relatively small number of categories is important to support
decisions, particularly when considering the presence of certain hu-
mans’ cognitive limitations which justify the use of psychometric-aware
scales such as the Likert scale (Likert, 1932).

In the case of the latter, we use a computed network outcome in
combination with other decision criteria capable of either validating or
imposing certain confidence intervals on the considered network out-
come. In other words, we aim to evaluate the network outcome in
combination with external information, considered of interest for the
problem, in order to understand the extent to which the observed
structure matches other relevant data or if such external data are irre-
levant to the network structure. Such approach to the evaluation of
network-based outcome would help in addressing ambiguity by means
of results characterized by a higher practical validity.

3. Data description

In order to clarify the importance of the proposed approach we will
consider, as an example, a social network that will be used throughout
the paper. The network taken into account is an online social network
of students from the Harvard College extracted from the Facebook100
dataset (Traud, Mucha, & Porter, 2012). The Facebook100 dataset
contains an anonymized snapshot of the friendship connections among
users affiliated with the first 100 colleges admitted to Facebook. The
obtained friendship network, depicted in Fig. 1, is related to Harvard
College and its largest connected component comprises nodes and

=m 682824 links.
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4. Node-level outcomes

As discussed in Section 1, node-level outcomes can be affected by a
certain level of ambiguity related to the difficulty in their interpreta-
tion. Such outcomes, also called centrality measures, can be of different
types and they are able to quantify the importance of nodes from dif-
ferent perspectives. For instance, there are measures able to quantify
the importance of the nodes based on the number and on the quality of
their connections (e.g., degree and eigenvector centrality), measures
that consider a node important if, being present in many paths between
couples of other nodes, it is involved in the process of information ex-
change (e.g., betweenness and closeness centrality) and measures that
quantify the importance of a node relatively to the characteristics of its
neighbourhood (e.g., local clustering coefficient and local efficiency). It
is also important to recall that such node-level measures are sometimes
network-level measures that are properly split among the network
nodes. Considering the Harvard friendship network of the Facebook100
dataset, we will compute two node-level measures, namely degree k
and local clustering coefficient c. The node degree ki measures the
number of connections of node i and it can be written, using the ad-
jacency matrix A, as:

=
=

k A .i
j

n

ij
1 (1)

The matrix A is a binary and symmetric matrix in which the element
=A 1ij ( =A 0ij ) in position ij, indicates the presence (absence) of a

connection between nodes i and j.
The local clustering coefficient c [0, 1]i measures the density of

connections of the neighbors of a given node i and it can be written as:

=c t
k
2

i
i

i
(2)

where ti is the number of links between the neighbors of i. The local
clustering coefficient ci has an inherent interest since it captures the
capacity of link creations among neighbors, i.e., the tendency in the
network to create stable groups in the network.

A viable option to avoid arbitrary cuts of the ranking deriving from
the computation of a certain centrality measure is that of dividing nodes

into classes using a more principled method. In order to classify the
nodes we use a non-parametric method that has been developed in the
field of bibliometrics (i.e., the study of scientific productivity of aca-
demics) to classify different categories of academics by partitioning the
distribution of their number of publications. The method, introduced in
Schubert, Glänzel, and Braun, 1987, is referred to as Characteristics
Scores and Scales (CSS) and can be consistently applied for partitioning
distributions not necessarily related to the number of publications. The
CSS method has been mostly exploited in the field of bibliometrics
where quantities such as authors’ productivity or number of citations
display strongly skewed as well as heavy tailed distributions. Such
heterogeneous distributions characterize also network outcomes, thus
the CSS method is apt for the considered case. The technique involves
reiterated truncation of a frequency distribution according to mean
values µ, also known as characteristic scores. After truncating the
overall distribution at its mean value, the mean of the sub-population
above the first mean is recalculated; the sub-population is again trun-
cated, and so on until the procedure is stopped (Abramo, D’Angelo, &
Soldatenkova, 2017). By applying the CSS method to up to three
characteristic scores while considering a node-level measure as a pro-
minence indicator, the following five categories of nodes can be ob-
tained:

• Zero prominence (ZP): = =C µ 00

• Low prominence (LP): <µ C µ0 1

• Fair prominence (FP): <µ C µ1 2

• High prominence (HP): <µ C µ2 3

• Very high prominence (VHP): >C µ3

Fig. 2 shows the distributions of degree (number of friends of the
node) and local clustering coefficient (interconnectedness of the node’s
friends) together with the results deriving from the application of the
CSS method to such distributions of node-level outcomes.

We observe that the distributions of the degree and of the local
clustering coefficient display very different shapes: the former is a
heavy-tailed distribution, a common feature of sparse real networks; the
second is a Gaussian-like distribution displaying right skewness. The
CSS method is able to partition the two distributions in different classes
regardless the distribution type, also giving us information about the
proportion of the nodes in each class given their prominence with re-
spect to a certain centrality index. In both cases we note that the ma-
jority of nodes have a centrality value below the first mean while
classes related to higher performances are progressively less populated.
This observation is more evident for the clustering coefficient whose
distribution displays right skewness rather than a heavy tail. Such kind
of partitioning of the network nodes is helpful when we are interested
in discovering the elements with the highest prominence, without
choosing them by means of an arbitrary cut of their ranking such as top
10 or top 20.

The CSS method is useful also in other situations where we consider
those network-level outcomes whose value can be split at node level but
that, despite this feature, may result in being hard to interpret. A well-
known example of such kind of measure is the assortativity coefficient
to degree, r [ 1;1], which measures the extent to which nodes with
similar number of connections are interconnected (Newman, 2003).

The assortativity coefficient to degree can be written in the fol-
lowing way:

=r
A k k m k k

k k k m k k
( /2 )

( /2 )
ij ij i j i j

ij i ij i j i j (3)

where ij is the Kronecker delta function. When we observe positive
assortativity it means that nodes with similar degree values are more
interconnected than expected at random. When we observe negative
assortativity (disassortativity) it means that nodes with different degree
values tend to be more interconnected than expected at random. The

Fig. 1. Representation of the Harvard College social network according to the
Facebook100 dataset. Nodes are colored according to the community parti-
tioning obtained using the Louvain method.
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assortativity coefficient is a very important measure for the study of
networks (as much as Pearson’s correlation is important in statistics)
but it is often summarized with the fact that high-degree nodes are
connected to high-degree nodes in the assortative case, and low-degree
nodes are connected to low-degree nodes in the disassortative one
(Newman, 2010). This simplification of the information content related
to assortativity may be due to the fact that the overall concept of as-
sociation between structurally similar nodes may result hard to inter-
pret and ambiguous, especially if the features of the underlying degree
distribution are not known. The assortativity coefficient to degree is a
network-level outcome but it can also be expressed considering the
contribution of each node to the global coefficient r in a way such that

=r ri i (Piraveenan, Prokopenko, & Zomaya, 2008, 2010)1.
As such, we can exploit the classes of degree obtained with the CSS

method so as to avoid processing information in an either too aggregate
(network-level) or too distributed (node-level) fashion, thus under-
standing the extent to which each class of nodes contributes to the
overall degree assortativity. This procedure would be especially helpful
for understanding and properly exploiting the information carried by
degree assortativity under different perspectives.

The Harvard social network that we take into account displays po-
sitive assortativity =r 0.14 meaning that nodes with similar degree
value tend to be interconnected. The global assortativity coefficient can
be split into its nodal components, thus producing the scatter plot re-
ported in Fig. 3 (left). In such a case we observe that most of the nodes
have a roughly zero contribution to global assortativity while the nodal
contribution deviates from zero for those displaying a higher degree.
Considering in more detail the contribution to assortativity by classes of
degree, obtained via the CSS method and displayed in Fig. 3 (right), we
note that positive assortativity is mostly due to links among high-degree
nodes rather than to links among low-degree ones. Such tight associa-
tion between high-degree nodes (i.e., those displaying very high pro-
minence in terms of number of connections) is explanatory since it
implies that the observed positive degree assortativity is not due to the
connections among similar nodes but rather to the connections among
highest-degree nodes. Such an observation has relevant implications in
practice. Suppose that we aim at inferring information about the users
of a social network by exploiting their tendency to associate with si-
milar ones; by looking at the assortativity coefficient we would say that
the general trend is towards association among users with similar de-
gree. However, such a trend is actually misleading since it is induced by
a strong localization of connections among nodes displaying a high

prominence in terms of degree. Once it is discovered that mostly high-
degree nodes are very well interconnected (i.e., the network displays a
rich-club (Zhou & Mondragón, 2004; Cinelli, 2019)), one could leverage
such knowledge to optimize the diffusion of information about a spe-
cific product or service. Using the insights obtained resolving the am-
biguity of the assortativity coefficient, we could exploit the density of
connection among hubs being almost sure that targeting even just one
hub would cause the complete diffusion of information across the whole
network.

5. Network-level outcomes

Network-level outcomes are used to summarize information about
the whole network in a unique value. Such an aspect is a source of
ambiguity since we may ignore further information about the network
and rely only on a single measure to interpret the data. In Section 4, we
have seen that it is possible to address the ambiguity related to net-
work-level outcomes when we are allowed to obtain their value split
across the nodes. However, such a possibility is not valid for all the
network measures and, in some cases, a better interpretation of the
measure itself would not be enough to get the multiple facets of the
problem being addressed. The analysis of network-level outcomes im-
plemented in Section 5 can be complemented considering the following
instance.

Suppose that a service provider wants to use information deriving
from a social media to profile users in order to offer them the most
suitable service. A good approach to this problem, also implemented in
many recommendation systems (Lü et al., 2012), would be to retrieve
communities of users and propose them a specific service by commu-
nity. Indeed, it is known that communities in social networks are often
made up of individuals similar in many respects, meaning the like-
lihood of observing similar preferences within a community is expected
to be higher than across communities. Considering only the structural
point of view of network data may be quite restrictive, despite being
useful, when we are interested in the preferences of the users. Ad-
ditionally, from the methodological point of view, it is worth noting
that the task of partitioning the network into communities displays an
inner ambiguity; indeed, several valid ways in which a network can be
partitioned into communities exist and they are not necessarily mu-
tually exclusive. In order to face the ambiguity deriving from the pos-
sibility of partitioning the network in different ways, it is possible to
introduce a further criterion of choice by exploiting additional in-
formation about the network nodes. Indeed, users normally display
additional features (sometimes called metadata) that are external to the
structure of the network and that can possibly display a certain

Fig. 2. Distribution of node-level out-
comes and results of the CSS method.
The panel in the top-left reports the
degree distribution, which displays a
heavy tail. The panel in the top-right
reports the distribution of the local
clustering coefficient, which displays a
Gaussian-like distribution with right
skewness. The panel in the bottom-left
reports the results of the CSS method
for the degree; the values of µ are:

= = = =µ µ µ µ0, 105, 202, 2910 1 2 3 .
The panel in the bottom-right dis-
tribution reports the results of the CSS
method for the local clustering coeffi-
cient; the values of µ are:

= = = =µ µ µ µ0, 0.21, 0.37, 0.610 1 2 3 .

1 In the case of nodal assortativity to discrete metadata, refer to Peel et al.,
2018
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correlation with the structure. Such metadata, in the case of a social
network, can be of various types such as age, gender or preference for
specific products/services. Metadata can be either uncorrelated to the
network structure (providing information unrelated to the system) or
correlated to the network structure (well representing the observed
patterns of connections). The analysis of metadata is of extreme im-
portance (Peel, Larremore, & Clauset, 2017; Cinelli, 2019) since, when
combined with structural outcomes, it is able to ease the interpretation
of the observed structural patterns thus allowing room for a consistent
use of information deriving from the network structure.

In order to present the problem of interrelation between the net-
work structure and the node metadata we will take into account the
aforementioned example of a service provider willing to profile users
for commercial purposes using a social network (represented here by
the Harvard friendship network introduced in Section 4). The social
network is divided into communities using a state-of-the-art community
detection algorithm, the Louvain method proposed by Blondel,
Guillaume, Lambiotte, and Lefebvre, 2008, which maximizes a quality
function known as modularity (Newman, 2006). Such a function eval-
uates the quality of a certain partition of the network into communities
(in terms of number of communities and nodes per communities) under
the assumption that communities are composed of nodes densely con-
nected among one other and sparsely connected to the rest of the net-
work. The expression of modularity is:

=Q
m

A
k k

m
g g1

2
(

2
) ( , )

ij
ij

i j
i j

(4)

where the communities are numbered starting from 1, and gi is the
number of the group to which node i belongs. The outcome of the
employed community detection algorithm is a modularity value Q, a
vector of integers reporting the assignment of nodes into communities
g, and a number of communities. Despite being widely used, one of the
fundamental problems related to modularity maximization methods is
the presence of degenerate or near-degenerate solutions (i.e., multiple
high-quality solutions corresponding to different assignments of nodes
to communities) that determine a certain level of ambiguity related to
the task of community detection.

Let us suppose that the aforementioned service provider will pro-
vide an amount of services equal to the number of communities. Once
the network has been divided into communities, nodes are assigned a
certain metadata value, drawn from a uniform distribution, whereby
the preference pi of the node i for an offered service is represented. Each
time that the preference of the node matches its community assignment
(i.e., =p gi i) the service provider gets a return of 1. Therefore, the
overall normalized return of the service provider can be written as:

=R
g p

n
( , )i i i

(5)

The overall return associated to a certain partition depends on the
correlation between the community assignment and the vector of pre-
ferences, as shown in Fig. 4. Since the assignment of preferences is
drawn from a uniform distribution it doesn’t show any particular cor-
relation with the community assignment. Therefore, the actual assign-
ment deriving from modularity maximization has no reason to be that

Fig. 3. Scatter plot of local assorta-
tivity to degree and results of the CSS
method for local assortativity and de-
gree. The left panel displays the values
of local assortativity. Low-degree nodes
are associated to values of local assor-
tativity that are nearly zero while high-
degree nodes are associated to values
of assortativity that are higher in ab-
solute value. The right panel
displays the results of the CSS applied
to local assortativity. The values of µ
for the different classes of degree are

= = = =µ µ µ µ0, 105, 202, 2910 1 2 3
and the corresponding overall
values of local assortativity are

= = =

= =

r µ r µ r µ

r µ r µ

( ) 0, ( ) 0.02, ( )

0.01, ( ) 0.05, ( ) 0.1
0 1 2

3 4

.

The sum of the latter set of values
equals the coefficient of assortativity to
degree =r 0.14. The inset of the right
panel reports the results of the CSS
applied to degree.

Fig. 4. Pictorial representation of community
partition and preferences of the users. The ex-
ample network is divided in two communities
and the related assignment in reported in the
vector beneath. The vectors on the right-hand
side are examples users’ vector of preferences
and they are reported together with their cor-
relation with the community assignment and
associated return values. The correlation is
computed using the Pearson’s correlation coef-
ficient and the return R is computed using Eq. 5.
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guaranteeing the best return, while different assignments may provide
better returns. Considering the vector of preferences of users fixed, it is
possible to compute different values of R by exploring different parti-
tions of the network in communities, as displayed in Fig. 4. Such an
exploration problem is important in order to understand the multiple
implications related to exploiting the network structure without being
aware of its potential correlation with the node metadata.

Such an analysis provides a valid framework for testing hypotheses
about users’ preferences by means of a scenario analysis when we only
have partial information about users’ preferences (collected, for in-
stance, via questionnaires) that we want to generalize to the whole
network by testing different possible configurations. In summary, the
network structure should be considered as the fundamental substrate to
which other data should be posed to enrich it, with the scope of re-
trieving and exploiting the desired information.

The exploration of different communities assignments is conducted
via a reshuffling of the assignment entries (a pictorial representation of
the procedure is reported in Fig. 5 (left)) that entails, at each instance,
the computation of a new modularity value Q and return R. The Har-
vard social network is divided into communities using the Louvain al-
gorithm, which retrieves 13 communities and a value of modularity
Q~0.48. The elements of the related assignment are then shuffled 500,
1000, 1500, 2000, 2500, 3000 times, with 250 instances each for a total
number of 1500 instances. The modularity values of the shuffles are
reported in the boxplots of Fig. 5 (right). Each instance is associated
with a certain return (reported in Fig. 6) and among the obtained re-
sults we are able to compute a Pareto front of the different (Q R, )
couples. The Pareto front represents the set of the different optimal

solution in terms of the Pareto optimality criterion, for which any of the
solutions cannot be improved with respect to one objective without
degrading the solution associated to another objective. The Pareto front
turns out to be an important element to take into account when running
community detection algorithms in order to consider more than one
perspective and explore different viable options. The introduction of
such information is useful in practical contexts, such as scenario ana-
lysis, and it may be helpful in addressing the ambiguity of the con-
sidered network outcome by avoiding decisions based on only one
criterion. In Fig. 6 we observe that all the shuffled community assign-
ments have a lower value of modularity than those deriving from the
Louvain method; however, different returns are associated with such
values. In fact, the assignment with the highest modularity is not as-
sociated with highest return; rather, it is conversely associated with an
assignment with a low modularity score, as shown in Fig. 6.

The analysis of multiple scenarios underlines that the problem of
finding communities can be embedded within a broader problem, still
providing fundamental insights for the study of networks. The adoption
of different criteria is helpful in order to address the ambiguity of
community detection since it explains the extent to which the network
structure is related to external information in terms of its elements,
while also providing the possibility to analyze scenarios related to
different decisions and strategies.

6. Conclusions

In this paper we have shown that network outcomes display a cer-
tain level of ambiguity related to their hardness of interpretation and to

Fig. 5. Example of a shuffle of the com-
munity assignment and boxplots of mod-
ularity values associated to different shuf-
fles. The left panel displays an example in
which one element of the community as-
signment is shuffled. The right panel dis-
plays boxplots reporting the distribution of
modularity for the community assignment
obtained with the Louvain method. The
assignment is shuffled 500, 1000, 1500,
2000, 2500, 3000 times for 250 instances.
More than one instance of reshuffling is
carried out so that an empirical distribu-
tion of the modularity Q and of the return
R for each number of shuffles can be ob-
tained.

Fig. 6. Modularity values and returns of different shuffles and Pareto front associated to such values. The left panel reports a scatter plot of the values of modularity
and return associated to different number of shuffles. The right panel reports the Pareto front deriving from the obtained shuffles.
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the context in which we exploit such outcomes. We have also shown
how a rationalization of the information content related to such mea-
sures, as well as the inclusion of different perspectives, can be helpful
for addressing ambiguity. In more detail, we have proposed a novel
method able to reduce the arbitrariness of ranking methods in the case
of node-level outcomes, and have outlined a way to exploit the com-
bination of structural and non-structural information to obtain im-
proved measures in the case of network-level outcomes. The application
of such methods to real data confirms the practical validity of the
proposed approach. The framework provided in this paper can be ex-
tended to other outcomes (both at node level and at network level), and
many different features, deriving from external data, can be included
when networks are taken into account. The possibility to efficiently and
rapidly address ambiguity of network outcomes is a key issue especially
in business-related environments, where the opportunity of rapidly
interpreting and exploiting the potential of network data can positively
affect performances. Such an observation is in line with recent studies
related to big data analytics for business that underline the potential of
big data while pointing out certain restrictions due to the lack of
technologies, tools and skills.

Other interesting concepts such as degeneracy, here used to define
equivalent solutions of a problem realized by involving different nodes,
may be considered. In fact, an interesting problem would be to un-
derstand the managerial and practical implications of degeneracy in
terms of the possibility of reaching equivalent solutions involving dif-
ferent sets of nodes. An application where degenerate solutions could
be exploited would be related to the task of team building where one
could obtain equally valid groups made of different professionals.

Finally, more in-depth knowledge and the frequent use of complex
networks in business environments would provide conspicuous benefits
to companies and organizations. Such an effort would require the de-
velopment of a wider amount of solution-oriented research at the
junction between network science and business studies.
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