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a b s t r a c t

Rich-club ordering and the dyadic effect are two phenomena observed in complex net-
works that are based on the presence of certain substructures composed of specific nodes.
Rich-club ordering represents the tendency of highly connected and important elements
to form tight communities with other central elements. The dyadic effect denotes the
tendency of nodes that share a common property to bemuchmore interconnected than ex-
pected. In this study, we consider the interrelation between these two phenomena, which
until now have always been studied separately. We contribute with a new formulation
of the rich-club measures in terms of the dyadic effect. Moreover, we introduce certain
measures related to the analysis of the dyadic effect, which are useful in that they confirm
the presence and relevance of rich-clubs in complex networks and provide certain insights
and a baseline for the evaluation of the rich-club size. In addition, certain computational
experiences show the usefulness of the introduced quantities with regard to different
classes of real networks.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Complex networks are a valid framework of representation and way to analyze a wide variety of real world phenomena.
Thanks to a rapid surge of interest in the field, a set of measures able to capture and quantify the peculiarities of various
heterogeneous networks have been subsequently introduced, in order to verify empirical observations at different levels of
detail. The majority of these measures focus on particular tendencies (dynamics) in nodes linkage and the related emerging
phenomena such as assortative mixing [1–3], homophily [4], and the rich-club phenomenon [5,6].

The rich-club phenomenon has been defined as the tendency of nodeswith a high centrality (usually degree) to formhighly
interconnected communities. It was initially introduced in [6] in order to analyze the Internet topology at the Autonomous

* Corresponding author.
E-mail addresses:matteo.cinelli@uniroma2.it (M. Cinelli), giovanna.ferraro@uniroma2.it (G. Ferraro), antonio.iovanella@uniroma2.it (A. Iovanella).

http://dx.doi.org/10.1016/j.physa.2017.08.122
0378-4371/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2017.08.122
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.08.122&domain=pdf
mailto:matteo.cinelli@uniroma2.it
mailto:giovanna.ferraro@uniroma2.it
mailto:antonio.iovanella@uniroma2.it
http://dx.doi.org/10.1016/j.physa.2017.08.122


M. Cinelli et al. / Physica A 490 (2018) 808–818 809

Systems (AS) level and to provide a reasonable explanation as to why such kinds of networks include tightly interconnected
hubs.

Commonly recognized as a power-law network [7], the Internet highlights one of the main properties of such degree
distributed networks; i.e. the presence of a small amount of nodes having a surprisingly large number of links, the rich nodes.
Defining the rich-club coefficient φ(k), Zhou and Mondragon [6] revealed that the Internet topology displays the rich-club
phenomenon, and that such tendency cannot be completely expressed by regular models that generate power-law degree
distribution such as the BA-model [7], the fitness model [8], and the Inet-3.0 Model [9]. Furthermore, they noted that well
knownnetworkmeasures, like degree assortativity, cannot detect this phenomenon (for instance somedegree disassortative
networks show the rich-club phenomenon). For this reason, studies that aim to recognize the connection patterns among
rich nodes are crucial, in order to provide important insights into a number of network structures ranging from computer to
chemical and social sciences [6,10].

This topic gained additional interest in the complex networks literature [11–14] being applied in the analysis of other
structural properties, as well as in more recent studies concerning the structural connectivity in the brains of both animals
and human beings [15–18]. Among all the contributions, thework of Colizza et al. [5] is particularly noteworthy, as it utilized
null models to analyze the implications of such a phenomenon from a more appropriate quantitative point of view. The
introduction of null models, obtained through a process of network rewiring which preserves the degree sequence [19,20],
was very important in order to overcome a bias when considering the rich-club coefficient φ(k) alone. Indeed, they proved
that all networks, even random ones, share a monotonic increasing behavior of the rich-club coefficient with increasing
value of degree. This problemwas attributed to an intrinsic feature of every network structure inwhich hubs, i.e. high degree
nodes, showahigher probability to bemore interconnected than lowdegree ones. Essentially, the introduction of nullmodels
normalizes the rich-club coefficient φ(k) dividing it by another coefficient φ(k)ran, which is computed in the same way of
φ(k) but results in an average over a proper set of random networks.

When considering the rich-clubs in networks, one can state that they show, in a broad sense, assortative mixing among
club members and, at the same time, disassortative mixing since the hubs are connected even to a certain amount of lower
degree nodes. In such trend, the rich-club coefficientmay be seen as ameasure able to quantify the level of assortativemixing
either to degree or to a discrete characteristic, i.e. to be part of the club or not. However, we ignore a priori the size of the
rich-club and, as mentioned before, the study of assortative mixing using standard measures [2] is not sufficient in this case.
For this reason, in order to make an association between the two phenomena, and thus meet the recent needs of network
science [21] by gaining new insights into rich-club ordering from an assortative mixing perspective, other approaches are
required.

Within this context, a particularly useful and relevant method was initially introduced by Park and Barabási [22], who
investigated assortative mixing using the so-called dyadic effect, which can be observed through a binary characterization
of the nodes in a network. The dyadic effect is present when the number of nodes sharing a common characteristic is larger
than expected if the characteristic were distributed randomly on the network. This effect, quantified by proper measures,
has been widely appreciated and adopted, with a number of extensions throughout many different contexts [23–26].

In this paper we consider the rich-club phenomenon and the rich-club coefficient as introduced in [6], studying them
with the solid theoretical basis provided by [5]. We contribute with a novel formulation of φ(k) in terms of dyads and dyadic
effect. Using this formulation, which holds if we interpret the excess of a certain degree threshold as a node characteristic,
we reveal certain relatedmeasures that provide alternative and additional tools to confirm and test the presence of rich-club
ordering in complex networks.

Inmore detail, we refine the denominator of the original rich-club coefficient, using a theoretical formulation of the upper
bounds to the occurrence of dyads types introduced in [27]. In addition, we quantify the improvement in the denominator of
the rich-club coefficient through ameasure thatwe call δ(k). The cut-off point in the curve related to δ(k) could be considered
as an indicator of the rich-club size.We then prove how this new formulationmaps into the coefficientρ(k) introduced by [5],
which needs to be considered when the significance of the rich-club coefficient is tested.

Moreover, we compute a novel index called φ(k), complementary to φ(k), which is able to report the extent and way in
which nodes of the club tend to connect to the outside, i.e. to non-club nodes. Using φ(k), we are able to understandwhether
nodes within the club preferentially connect to other high degree nodes, or to those with lower degree. Additionally, with
the procedure shown in [5], we compute the normalized index ρ(k), which will be useful for confirming and strengthening
the presence of rich-club ordering from a different perspective.

As this approach shows how the rich-club phenomenon and the dyadic effect map into one another, we are able to
quantify their magnitude using degree sequence, i.e. combinatorial, based arguments that take into account the different
kinds of connections among network nodes.

The paper is organized as follows: Section 2 provides the theoretical background; Section 3 shows the reformulation
and normalization of the rich-club coefficient; Section 4 contains the computational analysis and Section 5 presents the
conclusions.

2. Problem settings

2.1. Theoretical background

A network can be represented as a graph Gwith N nodes andM edges and herein we consider each graph as undirected,
unweighted, connected and simple, i.e. loops and multiple edges are not allowed.
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Fig. 1. Types of dyads.

Fig. 2. Two different partitions when n1 < n0 .

Fig. 3. Two different partitions when n1 > n0 .

The degree di of a node i is defined as the number of edges incident to i. The list of nodes degrees in non-increasing
order is called degree sequence DG and for every connected graph holds the Degree-Sum Formula or Handshaking Lemma,∑N

i=1di = 2M . A graphic sequence is defined as a list of nonnegative numbers, which is the degree sequence of certain
simple graphs, and a graph G with degree sequence DG is called a realization of DG. A generic list L of nonnegative numbers
is not necessarily a graphic sequence. Indeed, a necessary and sufficient condition is that

∑N
i=1di is even and

∑N
i=1di ≤

k(k − 1) +
∑n

i=k+1 min{k, di}, 1 ≤ k ≤ N [28]. The problem of determining whether L is a graphic sequence is referred to as
the Graph Realization Problem [29,30].

Given an integer n ≤ N , we consider the subsequence of the first n elements of DG whereby DH
G (n) ⊆ DG is the head of DG,

and the subsequence of the last n elements of DG whereby DT
G(n) ⊆ DG is the tail of DG.

A clique Kn is a complete subgraph of G of dimension n, i.e. a subgraph of n mutual interconnected nodes. A star Sn is a
subgraph of G of dimension n showing one node with degree n − 1 and the others n − 1 having degree 1.

2.2. The rich-club coefficient

For our purpose, in this paper we consider the rich-club coefficient expressed in terms of nodes degree as in [5] that can
be written as:

φ(k) =
2E>k

N>k(N>k − 1)
(1)

where E>k is the number of edges among the N>k nodes having degree di higher than a given value k and N>k(N>k−1)
2 is the

maximum possible number of edges among the N>k nodes. Therefore φ(k) measures the fraction of edges connecting the
N>k nodes out of the maximum number of edges they might possibly share.

2.3. Nodes characteristics and the dyadic effect

Herein, we refer to a given characteristic ci, which can assume the values 0 or 1, for each i ∈ N . Consequently, N can be
divided into two subsets: the set of n1 nodes with characteristic ci = 1, the set of n0 nodes with characteristic ci = 0; thus,
N = n1 + n0. We distinguish three kinds of dyads, i.e. edges and their two end nodes, in the network: (1 − 1), (1 − 0), and
(0 − 0) as depicted in Fig. 1.

We label the number of each dyad in the graph asm11,m10,m00, respectively. Hence,M = m11 +m10 +m00. We consider
m11 andm10 as independent parameters that represent the dyads containing nodes with characteristic 1.

Let DG be the degree sequence of G, we can use n1 and n0 to define its head DH
G (n1) or DH

G (n0) and its tail DT
G(n1) or DT

G(n0)
such that DG = DH

G (n1) ∪ DT
G(n0) or DG = DH

G (n0) ∪ DT
G(n1). These partitions of the degree sequence are given arbitrarily,

assigning the characteristic ci = 1 to the n1 nodes with the highest degree or to the n1 nodes with the lowest degree or vice
versa. Such partitions are reported in Figs. 2 and 3, distinguishing the case in which n1 < n0 or n1 > n0.
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When nodes in a network fit within two distinct groups according to their characteristics, two different parameters are
required to determine the existence of the relations between the network topology and the nodes features [22].Whether the
number of edges between nodes sharing a common characteristic is larger than expected if the characteristics are distributed
randomly on the graphwe observe a phenomenon called the dyadic effect [22]. Considering theN nodes and the case inwhich
any node possesses an equal chance of having the characteristic 1, given n1, the expected values ofm11 and m10 are [22]:

m11 =

(n1

2

)
δ =

n1(n1 − 1)
2

δ (2)

m10 =

(n1

1

)(n0

1

)
δ = n1(N − n1)δ (3)

where δ is the density and is equal to δ = 2M/N(N − 1). The relevant deviations of m11 and m10 from the expected values
m11 andm10 denote that the characteristic 1 is not randomly distributed [22,31]. Such deviations can be calculated through
the ratios called dyadicity D and heterophilicity H defined as:

D =
m11

m11
(4)

H =
m10

m10
(5)

In [22], it is established that m11 and m10 cannot assume arbitrary values, as there are indirect constraints due to the
network structure. Indeed,m11 cannot exceed

UBm11 = min(M,

(
n1

2

)
) (6)

and m10 cannot be larger than

UBm10 = min(M, n1n0) (7)

where UB stands for upper bound. These upper bounds are improved in [27], which explicitly outlines the structural
constraints regarding them11 andm10 links. The newupper bounds, which are herein used throughout the paper, arewritten
as:

UBm11 = min

(
M,

(
n1

2

)
,

⌈ ∑
i∈DH

G (n1)

min(di, n1 − 1)
2

⌉)
(8)

UBm10 = min

(
M, n1n0,min

( ∑
i∈DH

G (n1)

min(di, n0),
∑

i∈DH
G (n0)

min(di, n1)
))

(9)

The first upper bound is based on the fact that large cliques may be rare substructures in networks [32,33]; therefore,
using DG we check whether G can actually contain a complete subgraph of size n1. If not, we take into account the densest
hypothetical substructure that could be realized using the degree sequence of G. In the second upper bound we check if G
can contain n1 stars of size n0 or n0 stars of size n1 looking at the degree sequence DG. If not, we consider a set of stars made
of the first n1 elements of DG if n1 < n0 or made of the first n0 elements of DG if n0 < n1. The exhaustive explanations and
proofs are described in [27].

3. Reformulation and normalization of the rich-club coefficient

In this section we provide a reformulation of the rich-club coefficient involving most of the measures used in the study
of the dyadic effect.

3.1. Reformulation of the rich-club coefficient

Let us write:

ci =

{
1 if di > k
0 if di ≤ k

we immediately obtain N>k = n1 and N≤k = n0. Since E>k is defined as the number of edges between nodes N>k = n1,
we can consequently write E>k = m11 while the maximum possible number of links between nodes Nk can be written as
N>k(N>k−1)

2 =
(n1
2

)
.

Let us also define E>k = M−E>k−E≤k as the number of edges among theN>k andN≤k nodes having degree di greater and
less equal than a given value k. Note that N>kN≤k is the maximum possible number of edges among the N>k and N≤k nodes
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Table 1
Correspondences between rich-club measures and their counterparts in
terms of dyadic effect.

Rich-club notation N>k N≤k E>k E>k E≤k
Dyadic effect notation n1 n0 m11 m10 m00

and, given that we have a nodal bipartition, thus N = N>k + N≤k = n1 + n0. Therefore, we can write N>kN≤k = n1n0 and,
using the equality E>k = M − E>k − E≤k = M − m11 − m00 = m10 thus E>k = m10. A summary of the discussed measures
is reported in Table 1.

Under these circumstances we can reformulate φ(k) as:

φ(k) =
2E>k

N>k(N>k − 1)
=

m11(n1
2

) (10)

As previously outlined, by knowing the degree sequence DG, we understand that themaximum number of links between the
n1 nodes is bounded by UBm11 and, as shown in [27], it can be much lower than

(n1
2

)
. Through this upper bound, we observe

if the considered graph, as well as all the other ones having the same DG, can contain a complete subgraph of order n1. If
such case does not occur, DG cannot generate a graph containing a clique with n1 nodes and we can compute the rich-club
coefficient obtaining a more realistic value, tailored on the degree sequence of the graph under consideration.

This approach may lead to higher values of φ(k), and thus a better understanding and quantification of the phenomenon,
since we are taking into account a proper measure of dyadic effect. Indeed, in this case, the denominator of the coefficient
embeds an informative content which derives directly from a structural property of the network, i.e. the degree sequence
DG. Finally we can reformulate an improved version of φ(k) as:

φ(k)new =
m11

UBm11

(11)

3.2. The complementary rich-club coefficient

While computing m11 in order to have φ(k) or φ(k)new we can easily compute m10, i.e. the number of links between the
nodes of the rich-club (n1) and the nodes outside the club (n0). Using this approach,we are able to quantitatively determine to
which extent the nodes of the rich-club are connected to others in the network by making the following comparison: which
portion of the total degree of the clubmembers realizes internal connections, i.e.m11, versus which portion realizes external
connections, i.e.m10. Under these circumstances, it is useful to exploit a classification of network links that has been provided
(for instance, in [34]) in order to identify different classes of links within the human brain in case of rich-club ordering. In the
article, the different kinds of links are called rich-club connections if they link rich-club nodes, feeder connections if they link
rich-club nodes to nonrich-club nodes and local connections if they link nonrich-club nodes to each other. In our notation the
rich-club connections correspond tom11, the feeder connections correspond tom10 and the local connections correspond to
m00.

Following the same rationale as before, we can quantify the interaction among club and non-club members through the
index φ(k) =

E>k
N>kN≤k

and ipso facto reformulate and improve it with certain considerations similar to those of Section 3.1.
Summarizing we can initially write φ(k) =

m10
n1n0

and, using the formulation of UBm10 as mentioned in Section 2.1, express
φ(k) as:

φ(k) =
m10

UBm10

(12)

The index φ(k) represents the number of feeder connections divided by the maximum possible number of such
connections.

3.3. On the normalization of the rich-club coefficient

The use of null models and of the normalization process of topological and structural measures in complex networks rep-
resents a practice widely used to comprehend the real magnitude of certain phenomena. For this reason, the normalization
of the rich-club coefficient, suggested in [5] and adopted in many further studies [11,12,14–18], is a necessary procedure
that has to be adopted in order to take into account the significance of this index. The procedure involves an ensemble
of random networks, sometimes called maximally random networks [5,12], which have the same degree distribution and
sequence as the one under investigation that, if generated in a sufficiently large number, provide a null distribution of the
rich-club coefficient. The rewiring procedure itself is simple since it chooses two arbitrary edges at each step ((a, b) and (c,
d) for instance) and changes their endpoints (such that we obtain (a, d) and (c, b)); in case one or both of these new links
already exist in the network, this step is aborted and a newpair of edges is selected. The described procedure has beenwidely
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adopted since it preserves an important network parameter represented by nodes degree though other procedures aiming
to preserve other parameters may be adopted [19,35,36].

Using this method, the normalized rich-club coefficient is defined [5] as:

ρ(k) =
φ(k)

φ(k)ran
(13)

where φ(k)ran is the average rich-club coefficient across the randomnetwork ensemble.We observe rich-club orderingwhen
ρ(k) > 1. As previously mentioned, the process generates random networks with prescribed degree sequence DG, thus the
number of nodes with degree higher than k, N>k, will be the same for each k and for each network with the same DG of
the original one, implying that the denominator of φ(k), i.e. N>k(N>k−1)

2 , will be the same for either φ(k) or φ(k)ran. We can
consequently write:

ρ(k) =

2E>k
N>k(N>k−1)

2E>k|ran
N>k(N>k−1)

=
E>k

E>k|ran
(14)

or using the dyadic effect notation:

ρ(k) =
m11

m11|ran
(15)

wherem11|ran = E>k|ran is the average value ofm11 across the random networks ensemble. Similar considerations hold even
when we take into account φ(k)new and they are motivated by the nature of its denominator, UBm11, that depends uniquely
on the degree sequenceDG and includes the quantity

(n1
2

)
=

N>k(N>k−1)
2 , as shown in [27]. Therefore, for any value of k, UBm11

will be the same for each network, having the same degree sequence DG, leading to:

ρ(k)new =

m11
UBm11
m11|ran
UBm11

=
m11

m11|ran
(16)

and subsequently to the equality ρ(k)new = ρ(k).
This implies that our approach improves the rich-club coefficient φ(k) itself, and that the evaluation of the presence of

such ordering maps into the well known approach of [5]. So when we observe the presence of the rich-club ordering, i.e
ρ(k) > 1 and φ(k) ̸= 0, we can evaluate its magnitude by observing the value of φ(k)new or more precisely compare it with
the value of φ(k) considering the coefficient δ(k) defined as:

δ(k) =
φ(k)new − φ(k)

φ(k)new
(17)

Since φ(k)new ≥ φ(k) for each k, δ(k) ∈ [0, 1).
The coefficient δ(k) may be helpful in further testing the significance of rich-club ordering in networks. It is important

to underline that for high values of k, the number of nodes within the rich-club decreases, as does the denominator of φ(k).
In this case, the value UBm11 tends to equal the number of links within the clique, leading to δ(k) being valued at zero. The
index δ(k) underlines the fact that very large cliques are uncommon in real networks [32] and that the presence of dense
substructures should be conducted usingmeasures, such asUBm11, that aremore related to the network under investigation.

When δ(k) > 0 thenφ(k) ≤ φ(k)new because
(n1
2

)
≥ UBm11. Indeed,UBm11 exploits combinatorial arguments and captures

the densest realizable substructure when a clique of n1 nodes is not realizable within the given DG. Thus, φ(k)new is more
likely to identify the best (densest) rich-club not as a clique, but as a sparser subgraph of the same size.

Another relevant information derives from the analysis of the relationships between club andnon-clubmembers, i.e. from
the so-called feeder connections, using the aforementioned coefficientφ(k). It compares the number of feeder connections in
the network with the number of feeder connections across the random network ensemble, quantifying the portion of edges
that have start point in club nodes and end point in non-club nodes. Even in this case, we are able to adopt the normalization
process to obtain a second coefficient: ρ(k). This can be helpful in capturing and evaluating the interplay among different
classes of nodes, quantifying for each clubmember the portion of its degree invested in the outside and computing the same
quantity across all the club members. Therefore, we can write

ρ(k) =
φ(k)

φ(k)ran
(18)

where φ(k)ran is the average across the random network ensemble.
For networks showing rich-club ordering we expect that, compatibly with the size of the club, most of the degree of

club members will be invested in links with other club members, meaning φ(k) ≤ φ(k)ran. In other words, when rich-club
ordering is present, we expect members showing di > k (i.e. n1) to be more connected among themselves that to other with
di < k (i.e. n0) especially in comparison to randomized networks.

Thus, with the presence of rich-club ordering, it is expected that the curve of ρ(k) approaches the value ρ(k) = 1 from
below while k increases, meaning that we have fewer feeder connections than in random networks having the same degree



814 M. Cinelli et al. / Physica A 490 (2018) 808–818

Fig. 4. Curves related to ρ(k) and ρ(k) for the AS-level Internet network.

Fig. 5. Curves related to ρ(k) and ρ(k) for the top 500 US airports network.

sequence as that of the original. Indeed, m10 ≤ m10|ran means that high degree nodes tend to connect more densely to one
another than to low degree nodes.

It is also important to point out that the trend of the curve ρ(k) reaching the value ρ(k) = 1 (either from below or from
above) is not surprising, especially for high values of k, since for such values the clique size could be very small. For instance,
let us consider a certain network showing rich-club ordering. If we imagine that the club is made up of the three highest
degree nodes of the network, a triangle would be the biggest clique, thus allowing the rich-club to have three links at most.
In this case, the three nodes will necessarily connect to other ones showing a lower degree, thereby increasing the chance
of having φ(k) = φ(k)ran. For these reasons, the values assumed by ρ(k) have to be considered collectively via a curve that is
able to represent the tendency of high degree nodes to connect mainly to other high degree nodes; i.e. a curve able to unveil
the tendency of nodes to form connected cores of important members. If the curve ρ(k) approaches the value ρ(k) = 1 from
below, this seems to further confirm the presence of rich-club ordering.

4. Computational results

Herein, we show computational results for three different networks: the AS-level Internet topology as in [6], the top 500
US airports network as in [37] and the Scientific Collaboration Network as in [38]. In order to compute ρ(k) for the three case
studies we consider a set of 1000 random graphs generated by randomizing the connections of the adjacency matrix while
preserving the original degree sequence such as, for instance, in [5,39,40]. The data processing, the network analysis and all
simulations were performed using the software R [41] with the igraph library [42].

In the case of the Internet topology and referring to ρ(k) in Fig. 4(a), we obtained results corresponding to those of [5]
that are in some way strengthened by the fact that ρ(k) is approaching the value ρ(k) = 1 from above, as shown in Fig. 4(b).
Thismeans that the feeder connections are distributed as in randomnetworkswith the same degree sequence of the original
one. This shows the low tendency of hubs to connect mainly to other hubs, thus confirming the absence of a strong rich-club
ordering in such a structure. It is also worth mentioning at this point that the study of the rich-club ordering on the Internet
topology is still a debated issue [11,13].

In the case of the top 500US airports network, we observe rich-club ordering as shown in Fig. 5(a), which is still confirmed
by the distribution of the feeder connections approaching the value ρ(k) = 1 from below as depicted in Fig. 5(b). Indeed, in
this network, ρ(k) is always less than 1, thus the nodeswithin the club tend to bemore densely connected among themselves
than observed in random networks.

In the third case of Citation network, shown in Fig. 6, we also have rich-club ordering, once again confirmed by the trend
of ρ(k) approaching the value ρ(k) = 1 from below. These three examples seem to confirm the discriminating power of ρ(k).

Moreover, similarly as in [11], we call:

p̃ =
#[φ(k) ≤ φ(k)|ran]

n
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Fig. 6. Curves related to ρ(k) and ρ(k) for the Scientific Collaboration network.

Fig. 7. Curves related to p̃, for the AS-level Internet network (a), the top 500 US airports network (b) and the Scientific Collaboration network (c).

where φ(k) is the rich-club coefficient of the actual network, φ(k)|ran is the set of rich-club coefficients of the rewired
networks and n is the amount of rewired networks that we generated. Thus, p̃ can be considered as the likelihood that
φ(k) ≤ φ(k)|ran, i.e. the likelihood of finding a random network with an equal or tighter structural organization of high
degree nodes.

As p̃ decreases, so too does the expectation of finding a value of φ(k)|ran greater than φ(k), thus indicating stronger
evidence towards the presence of rich-club ordering. In Fig. 7 we observe certain changes in the curves of p̃while k increases.
In more detail, the US airports and the Scientific Collaboration networks show an increasing trend of p̃ because hubs possess
a higher probability (proportional to their degree) of being interconnected when we consider randomized networks. In the
case of the Internet, we observe a peculiar arrangement of nodes interconnections (lower values of p̃) only if they are hubs.
In any case, the curve of p̃ continues to increase after a first discontinuity, displaying a behavior that is similar to ρ(k), which
indeed overcomes the threshold value ρ(k) = 1 only for very high values of k.

Figs. 8–10(a) display the curves of φ(k) and φ(k)new , which were obtained by computing the rich-club coefficient in its
original reformulation [6] and the reformulated rich-club coefficient.

We observe that, up to a certain point, our reformulation outperforms the older one because of the impossibility to realize
a clique of size n1 using the degree sequence of the considered network. Conversely, the two coefficients become equal
when a clique is realizable and thus the network structure allows the presence of a rich-club. It is worth mentioning that
the situations in which a rich-club is likely to be present are those of interest in the study of real networks as the rich-club
structural properties are able to provide insights about local and global aspects of the whole system [13,43–46].

Through the analysis of the curves related to φ(k) and φ(k)new , we can also discuss the monotonic increase of the original
rich-club coefficient reported in [5]. Indeed, our coefficient, which is an extension of the previous one, is not monotonically
increasing at all and thus overcomes the bias reported in [5] for any value of k. It is worth noting that themonotonic increase
of φ(k) was also discussed in [36], where it is shown that the coefficient may assume a bell shape for higher values of k.

Figs. 8–10(b) display the curves related to the coefficient δ(k),whichhas been introduced in order to synthetically evaluate
the gain that derives from the adoption of φ(k)new . The trend of the three curves mainly depends on the shape of the
degree sequence DG thus, on the degree distribution of the network under examination, since the new upper bound (the
denominator of φ(k)new) is computed using that element. The decreasing behavior of the curve is not surprising; indeed
while the degree k grows, the number of elements with degree higher than k (Nk = n1) decreases, implying a consequent
reduction in the number of links within the clique of size N>k = n1 that becomes more likely to be present. It is therefore
interesting to discuss the cut-off points of the curves related to δ(k) that correspond to the points where the curves φ(k)
and φ(k)new encounter each other. The cut-off points occur in correspondence to the degree value k, which is necessary to
overcome in order to guarantee a certain likelihood of finding a complete subgraph of size n1. As such, the cut-off points can
thus be interpreted as a first indicator of the rich-club size. In the Internet network (N = 11 461, M = 32 730), we observe
the cut-off point when k = 83 and in such a network the number of nodes with degree higher than k is N>k = n1 = 84.
Therefore, if we consider the cut-off point as a rich-club size indicator, we would obtain a subgraph with n1 = 84 nodes,
i.e. a subgraph whose size is 0.7% ( n1N = 0.0073) with respect to the whole network. In the case of the US airports network
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Fig. 8. Curves related to φ(k) vs φ(k)new and δ(k) for the AS-level Internet network.

Fig. 9. Curves related to φ(k) vs φ(k)new and δ(k) for the top 500 US airports network.

Fig. 10. Curves related to φ(k) vs φ(k)new and δ(k) for the Scientific Collaboration network.

(N = 500,M = 2980), the cut-off occurs when k = 83 and, in this case, N>k = n1 = 39, thus the rich-club size is estimated
to be around 8% ( n1N = 0.078) of the whole network. In the case of the Scientific Collaboration network (N = 13 861,
M = 44 619), the cut-off occurs when k = 47 and, in this case, N>k = n1 = 48, thus the rich-club size would be close to
0.3% ( n1N = 0.0034) of the whole network.

The greater size of the rich-club estimated in the case of the US airports network may be due to the density of such
a network (0.023) while the densities of the Internet and the Scientific Collaboration networks are much lower (around
0.0005 and 0.0004 respectively). Thus the size of the rich-club may be related to network density and the cut-off point in
the curve of δ(k) can be considered as a first indicator (or upper bound) to the rich-club size. Additionally, this quantity that
cannot be computed a priori [47] and is conventionally assumed to be a certain low percentage [6,13] of the nodes with the
highest degree without analytical evidence.

5. Conclusions

In this paper, we investigated the organization of rich nodes in networks from a slightly different perspective: the dyadic
effect. We proved how rich-club ordering and the dyadic effect have much in common, showing how one can map into
another and vice versa. Exploiting certain properties concerning the study of dyads, we provided additional instruments in
order to investigate and confirm the presence of rich-club ordering. As previously mentioned, the issue of knowing whether
a certain network possesses a rich-club is important for many reasons, including factors relating to either its functional or
topological role. Indeed, the presence of this peculiar substructure is relevant in problems such as resilience and information
flow in networks, mainly because of its influence on crucial properties like assortativity and transitivity.

From the computational point of view, the analysis of rich-club in terms of the dyadic effect needs the same resources of
its original formulation since it provides simultaneously (i.e from a single network observation) the values of m11 and m10
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that are necessary in order to obtain φ(k) and φ(k). The last observation holds even for what concerns the computation of
the set of rewired networks that is the same for both ρ(k) and ρ(k). Moreover, the analysis of the cut-off point of the curve
related to δ(k) gives the possibility of providing an upper bound to the rich-club size, which is independent of the ensemble
of randomized networks due to the fact that it is based only on structural constraints. The consistency of our approach
with the literature, in term of normalization processes, represents a further advantage because it includes a more detailed
information content related to the presence of both rich-club connections and feeder connections.

As further investigation, it may be interesting to study the organization of non-rich nodes and their connection patterns.
For instance, a coefficient φ̃(k) =

m00
UBm00

(where UBm00 corresponds to UBm11 when considering nodes with ci = 0) may be
introduced to test the connectance among nodes linked by local connections. However, the analysis of such an aspect could
represent a difficult issue to deal with because of the interpretation given to the presence of highly interconnected nodes
with relatively low degree.

Another important aspect may concern the relationship between rich-club ordering and other centrality measures
beyond degree. It would be interesting to study dyadic interactions among nodes possessing values of centrality over a
certain richness threshold. Lastly, the extension of the dyadic effect to weighted and directed networks could provide room
for new developments linked to results in the existing literature that has focused on the investigation of particular networks,
such as the World Trade Web and the brain networks in mammals.
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