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The dyadic effect is a phenomenon that occurs when the number of links between nodes sharing a common
feature is larger than expected if the features are distributed randomly on the network. In this article, we
consider the case when nodes are distinguished by a binary characteristic. Under these circumstances,
two independent parameters, namely dyadicity and heterophilicity are able to detect the presence of the
dyadic effect and to measure how much the considered characteristic affects the network topology. The
distribution of nodes characteristics can be investigated within a two-dimensional space that represents the
feasible region of the dyadic effect, which is bound by two upper bounds on dyadicity and heterophilicity.
Using some network structural arguments, we are able to improve such upper bounds and introduce two
new lower bounds, providing a reduction of the feasible region of the dyadic effect as well as constraining
dyadicity and heterophilicity within a specific range. Some computational experiences show the bounds
effectiveness and their usefulness with regards to different classes of networks.
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1. Introduction

Complex systems modelled as networks exhibit global structures that are commonly affected by the
characteristics of their founding elements. Indeed, the properties of these elements often correlate with
the architecture of the observed systems ([2, 26]). This article is devoted to the situations where nodes
themselves have peculiar properties that carry significant information regarding their role within the
network topology. In literature ([8, 25]), the tendency of nodes to link with others that are similar to
themselves is a phenomenon called homophily, which affects the dyadic similarities between nodes and
creates correlated patterns among neighbours. The nodes tendency to connect with each other also relates
to the concept of assortative mixing [27] which describes correlations because of some nodes properties.
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Park and Barabási [30] noted that, when nodes in a network fit within two distinct groups according
to their characteristics, two different parameters, namely dyadicity and heterophilicity are required to
identify the relations between the network topology and nodes features.

The dyadic effect has been considered in order to assess the functional role of nodes within biological
networks such as, for instance, in gene-gene interaction in statistical epistasis networks [20], in phenome-
genome networks [21] in disease-phenotype networks [22] and in protein-protein interaction networks
([10, 34]) where numerous characteristics are studied to evaluate genetic interactions. Nodes’ charac-
teristics are investigated also in inter-organizational innovation networks ([14–16]) where partnerships
agreements of technological transfer among countries are related to innovation indices.

The investigation of mixing patterns within networks can be performed using at least two different
approaches. The first is based on the assortativity coefficient [7, 13, 24, 32, 35] that represents a second
order network metric [29], able to quantify through a unique index the presence of homophilic patterns in
the whole network for either scalar (e.g. degree) or discrete node characteristics (e.g. gender). The second
approach constrained to cases when each node is characterized by a binary feature [30] goes towards a
microscopic level of detail being based on the study of dyads. The analysis of the interplay among different
dyads is able to unveil the node-network correlation through the use of two coefficients that separately
quantify the level of homogeneity and heterogeneity in networks. This lets room to the identification of
local aspects for instance, we can observe a dyadic and heterophilic network being globally disassortative
as we will show later on. Indeed the relationship between assortative mixing and dyadic effect requires
further investigation.

The methodology presented in [30] is able to study exhaustively all the configurations of a binary
characteristic on a network using a phase diagram, which lies into a two dimensional space constrained
by certain network related bounds. However, current bounds are computed a-priori considering either
particular networks arguments or the number of featured nodes, which results in a space that is often
much larger than necessary. Another important issue is related to the phase diagram computational
complexity which grows exponentially in the number of nodes, implying some limitations in real appli-
cations. The literature has attempted to overcome these difficulties by using heuristics or statistical
methods. For instance, in [30] it is reported a heuristic method able to identify extremal configurations;
in [20–22], and [34] statistical methods are used to infer the existence of some configurations in compu-
tational biology, while in [3] entropy-based measures are used to globally assess the relevance of nodes
characteristics.

The contribution of this article lies in the improvement of current upper bounds through considerations
related to structural arguments surrounding a given network. The reduction of the two dimensional
space is performed by not only considering the two upper bounds but by also introducing two lower
bounds. We also present the analytical reasonings and we test their behaviour on different classes of
networks.

New bounds foundations are rooted in the degree sequence which can be easily extracted from any
network. Although the results we obtain in the space reduction can be valuable, we make use of the
straightforward relationships that allow us to compute such bounds independently of the network size.

We provide a reduction of the dyadic effect feasible region, which can be used in all the applications
where the degree of correlation of the nodes characteristics with the network topology is evaluated consid-
ering empirical arguments instead of computing the phase diagram such as, for instance, in [20] and [4].
Moreover, by introducing the four bounds we are limiting the values of dyadicity and heterophilicity to
lie in a range that can be easily computed.

The article is organized as follows: Section 2 gives the problem settings; Section 3 shows the upper
and lower bounds; Section 4 contains the computational analysis; Section 5 presents the conclusions.
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2. Problem settings

2.1 Theoretical background

The classical mathematical abstraction of a network is a graph G. Let G = (V , E) be a graph composed
of a set V of N nodes and a set E of M edges that defines the relationship among these nodes. Herein G is
considered undirected, unweighted, connected and simple, i.e. loops and multiple edges are not allowed.

The degree di of a node i ∈ V is defined as the number of edges in E incident to i. The nodes degrees
listed in an non-increasing order are referred to as degree sequence DG and, as we recall, for every
connected graph holds the Degree-Sum Formula or Handshaking Lemma,

∑N
i=1 di = 2M. A graphic

sequence is defined as a list of non-negative numbers which is the degree sequence of certain simple
graphs. A graph G with degree sequence DG is called a realization of DG.

A generic list L of non-negative numbers is not necessarily a graphic sequence. Indeed, a necessary
and sufficient condition is that

∑N
i=1 di is even and

∑N
i=1 di ≤ k(k − 1) + ∑n

i=k+1 min{k, di}, 1 ≤ k ≤ N
[11]. The problem of discovering if L is a graphic sequence is called Graph Realization Problem ([18, 19]).

Given an integer n ≤ N , we consider the subsequence of the first n elements of DG calling it
DH

G(n) ⊆ DG as the head of DG, and the subsequence of the last n elements of DG calling it DT
G(n) ⊆ DG

as the tail of DG.
A clique Kn is a complete subgraph of G of dimension n, i.e. a subgraph of n mutual interconnected

nodes. The problem of finding the clique of highest cardinality in G is a well-known NP-problem [17].
Since the degree of nodes in a clique of cardinality n is at least n − 1, a necessary condition for the
existence of such clique is that DG contains at least n nodes of degree di ≥ n − 1, otherwise the graph G
cannot contain such clique.

A star Sn is a subgraph of G of dimension n showing one node with degree n − 1 and the others n − 1
having degree 1.

Traditionally, in graph theory, edges have two endpoints since, by definition, they represent a reciprocal
relationship between two nodes. In the literature of graph realization problem, as well as that of dynamic
graphs, it is possible to admit half-edges anchored at one node of a degree sequence while the other
endpoint is free. This particular object is called stub [28]; when two stubs of two distinct nodes connect,
then a classical edge is realized [23].

2.2 Nodes characteristics and dyadic effect

Herein, we refer to a given characteristic ci, which can assume the values 0 or 1, for each i ∈ N .
Consequently, N can be divided into two subsets: the set of n1 nodes with characteristic ci = 1, the set
of n0 nodes with characteristic ci = 0; thus, N = n1 + n0. We distinguish three kinds of dyads, i.e. edges
and their two end nodes, in the network: (1 − ï¿½1), (1 − ï¿½0) and (0 − ï¿½0) as depicted in the Fig. 1.

We label the number of each dyad in the graph as m11, m10, m00, respectively. Hence, M = m11 +
m10 +m00. We consider m11 and m10 as independent parameters that represent the dyads containing nodes
with characteristic 1.

Let DG be the degree sequence of G, we can use n1 and n0 to define its heads DH
G(n1) or DH

G(n0) and
the tails DT

G(n1) or DT
G(n0) such as DG = DH

G(n1) ∪ DT
G(n0) or DG = DH

G(n0) ∪ DT
G(n1). These partitions

Fig. 1. Types of dyads.

Downloaded from https://academic.oup.com/comnet/article-abstract/5/5/694/3078584/Structural-bounds-on-the-dyadic-effect
by Universite catholique de Louvain user
on 04 October 2017



STRUCTURAL BOUNDS ON THE DYADIC EFFECT 697

Fig. 2. Two different partitions when n1 < n0.

Fig. 3. Two different partitions when n1 > n0.

of the degree sequence are given arbitrarily assigning the characteristic ci = 1 to the n1 nodes with the
highest degree or to the n1 nodes with lowest degree or vice versa. Such partitions are reported in Figs 2
and 3, distinguishing the case in which n1 < n0 or n1 > n0. We make this construction in order to use it
in Section 3.

When nodes in a network fit within two distinct groups according to their characteristics, two different
parameters are required to determine the existence of the relations between the network topology and the
nodes features [30]. In many systems, the number of edges between nodes sharing a common characteristic
is larger than expected if the characteristics are distributed randomly on the graph; this phenomenon is
called the dyadic effect [33]. If a casual setting among the N nodes is considered, where any node has an
equal chance of having the characteristic 1, the expected values of m11 and m10 are [30]:

m11 =
(

n1

2

)
δ = n1(n1 − 1)

2
δ (2.1)

m10 =
(

n1

1

)(
n0

1

)
δ = n1(N − n1)δ, (2.2)

where δ is the density and is equal to δ = 2M/N(N −1). The relevant deviations of m11 and m10 from the
expected values m11 and m10 denote that the characteristic 1 is not randomly distributed ([8, 30]). Such
deviations can be calculated through the ratios of dyadicity D and heterophilicity H defined as:

D = m11

m11
(2.3)

H = m10

m10
(2.4)

If the characteristic is dyadic, D > 1, it means that nodes with the same characteristics tend to link
more tightly among themselves than expected in a random configuration. Conversely when D < 1, the
characteristic is anti-dyadic, indicating that similar nodes tend to connect less densely among themselves
than expected in a random configuration. The characteristic is defined as heterophilic, with a value
H > 1, highlighting that nodes with the same features have more connections to nodes with different
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Fig. 4. Example

Table 1 Example measures

N = 43 M = 45
δ = 0.05 n1 = 4
m11 = 0.3 m10 = 8.16
rdiscrete = −0.76 rscalar = −0.75
D = 20 Dmax = 20
H = 4.8 Hmax = 19.11

characteristics than expected randomly. On the contrary, with a value H < 1, the characteristic is defined
as heterophobic, meaning that nodes with certain characteristics have fewer links to nodes with different
characteristics than expected randomly.

In [30], it is established that m11 and m10 cannot assume arbitrary values, as there are indirect constraints
due to the network structure. Indeed, m11 cannot exceed

UBm11 = min(M,

(
n1

2

)
) (2.5)

and m10 cannot be larger than

UBm10 = min(M, n1n0) (2.6)

where UB stands for upper bound.
Lastly, we provide an example of the aforementioned measures being applied in order to shed more

light on the differences between the assortativity coefficient r and the metrics D and H. We take into
account a network with N = 43, M = 45 and n1 = 4, where we have the four higher degree nodes having
characteristic ci = 1 (see Fig. 4). As reported in Table 1, the network displays a strong disassortative
mixing either to degree rscalar = −0.75 or to the discrete characteristic rdiscrete = −0.76 (values are
computed using the formulas as in [27]) meaning that similar nodes tend to avoid each other. The
disassortative mixing at global level hides the presence of an important local substructure (the so called
rich-club [5, 36]) in which similar nodes are tightly connected. Note that the value of dyadicity is
D = Dmax = 20, which is the maximum achievable value, while the disassortative mixing is confirmed
by the value of heterophilicity H = 4.8.
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Fig. 5. Configurations of four extreme points on the phase diagram.

Fig. 6. The phase diagram of possible values of (m11, m10 when n1 = 10). The values of m11 and m10 referred to the four
configurations of Fig. 5 are reported.

2.3 The phase diagram

One instrument to investigate the correlation among the distribution of a given property c and the under-
lying network structure is the phase diagram which, in general, describes the admissible configurations
in the graph.

We consider, as an example, the graph shown in Fig. 5 that depicts a network with 25 nodes and 32
edges of which n1 = 10 black nodes are randomly distributed.

The corresponding phase diagram in Fig. 6 describes the distribution of a random feature in the
system. It should be noted that the reported phase diagram shows only a subarea.
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The phase diagram presents all the admissible combinations of m10 (x-coordinate) and m11 (y-
coordinate) and each corresponding square collects the number of assignments of n1 nodes over the set N
for every fixed m10 and m11. There is a direct correspondence among the m10 and m11 axis and, respectively,
H and D, since the values are related through means of Equations 2.3 and 2.4. Moreover, m11 from 0 to
UBm11 and m10 ranges from 0 to UBm10. Correspondingly, D ranges from 0 to Dmax = UBm11/m11 and H
ranges from 0 to Hmax = UBm10/m10. For a given m11 and m10, each square has a darkness proportional
to the degeneracy of the configuration and an open square means that is not possible to place n1 nodes
consistently with the fixed values and constraints imposed by the network topology.

Beside such squares, the phase diagram has some other meaningful areas to discuss. In particular,
the high degeneracy squares are considered as the most typical configurations for a random distribution
of a property D = H = 1; and the phase boundaries squares map atypical configurations. For such
phase boundaries different layouts are recognizable. Indeed, in Fig. 5, four possible configurations are
represented (where the point of each configuration is correspondingly numbered in the phase diagram of
Fig. 6): D � 1 is a dyadic case where black nodes concentrate in a central cluster of the graph which
maximizes m11; D � 1 is an anti-dyadic configuration where black nodes tend to be farther apart; H � 1
is an heterophobic configuration where black nodes are located in the peripheral area which minimize
m10; and, H � 1 is an heterophilic configuration where black nodes correspond to the most connected
nodes so that the edges with white nodes are maximized.

The graphical nature of the phase diagram allows for easier observation of the distribution of the nodes
characteristics, however, as the number of the possible configurations increases exponentially with N , the
phase diagram is hard to compute for large networks. Moreover, since n1 ∈ [0, N] it can change while
the network structure remains the same. Indeed the number of nodes showing a certain characteristic can
change, or different characteristics can be studied by varying n1, such as in [20]. Therefore, a complete
analysis may require a sequence of N + 1 phase diagrams computed for each value of n1 as in [4]. An
outcome of the latter case for a graph with 25 nodes and 32 edges is shown in Fig. 7.

3. Upper and lower bounds

In this section, we propose an extension of upper bounds (2.5) and (2.6) for a graph G given N , M and
n1 ∈ [0, N]. Moreover, we propose two lower bounds (LB) to m11 and m10. In other words, we want to
restrict the feasible region of the dyadic effect for a graph G as much as possible, excluding non-admissible
configurations.

We can notice that in [30] no lower bounds are provided, thus both bounds on m11 and m10 are assumed
to be zero at minimum.

3.1 Upper bound UBm11

Equation (2.5) states that the maximum number of m11 within a network is equal to the minimum between
two quantities: the number of network edges (meaning that all the edges are m11 and n1 = N); the number
of edges within a clique Kn1 , i.e. a complete subgraph with n1 nodes within G.

The rationale behind the latter statement is that the upper bound is pushed to the maximum value
when G is supposed to contain n1 nodes arranged in a clique.
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Fig. 7. The sequence of the phase diagrams of the network depicted in Fig. 5 when n1 grows from 0 to N . The value of n1 increases
starting from left to right and from the upper to the lower side of the figure therefore it should be read row by row and dotted lines
indicate the coordinates of D = H = 1. The sequence shows the various shapes assumed by the phase diagram, thus its sensitivity
to changes of n1 in terms of covered area.
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Proposition 3.1 Let us consider the degree sequence DG of the graph G with n1 nodes having the
characteristic equal to 1. The upper bound UBm11 on the number of edges m11 is:

UBm11 = min

⎛
⎜⎝M,

(
n1

2

)
,

⎡
⎢⎢⎢⎢

∑
i∈DH

G (n1)

min(di, n1 − 1)

2

⎤
⎥⎥⎥⎥

⎞
⎟⎠ (3.1)

Proof. Considering the degree sequence, we distinguish two different cases based on the fact that DG

may or may not contain n1 nodes of degree at least n1 − 1.

1. DG contains n1 nodes of degree at least n1 − 1.

In this case, the necessary condition for the existence of Kn1 holds and we can suppose, as a worst
case, the realization of a clique Kn1 considering DH

G(n1). Thus, the bound given in formula (2.5) is
the tightest.

Note that if in DG it is possible to realize a clique Kn1 , its nodes can be considered the same as
those in DH

G(n1). Indeed, DG is an ordered sequence and if DH
G(n1) does not realize Kn1 , none other

subsequence into DG can realize it. Therefore, we refer our analysis to the subsequence DH
G(n1).

2. DG does not contain n1 nodes of degree at least n1 − 1.

As Kn1 is the densest possible realization in DH
G(n1), we can similarly search for the densest possible

realization actually feasible in the subsequence when the clique is not realizable. By construction,
DG is graphic but a subsequence cannot be graphic albeit the sum of its elements is even. Indeed,
DH

G(n1) is a graphic sequence only if conditions reported in [11, 18, 19] hold; otherwise, it is not
graphic.

(a) DH
G(n1) is graphic.

In this situation, the densest hypothetical realization of DH
G(n1) is a graph in which the handshaking

lemma holds, thus the number of its edges is m11 = ∑
i∈DH

G (n1) min(di, n1 − 1)/2 because each one
of the n1 nodes has its degree bounded by the value n1 − 1.

(b) DH
G(n1) is not graphic.

Since we are searching for upper bounds, the situation in which DH
G(n1) is not graphic can

be managed through an overestimation of the handshaking lemma. In this case, we consider
the densest hypothetical realization of a simple graph that involves the maximum number of
stubs corresponding to min(di, n1 − 1) for any i ∈ DH

G(n1). In order to obtain the UB value,
we consider the involvement of all the elements in DH

G(n1), ceiling the sum if odd. Through
this procedure the handshaking lemma holds and we can compute the number of edges as
m11 = 	∑i∈DH

G (n1) min(di, n1 − 1)/2
.

Summarizing all the considerations thus far, UBm11 can be written as in Formula (3.1).

�

Downloaded from https://academic.oup.com/comnet/article-abstract/5/5/694/3078584/Structural-bounds-on-the-dyadic-effect
by Universite catholique de Louvain user
on 04 October 2017



STRUCTURAL BOUNDS ON THE DYADIC EFFECT 703

3.2 Upper bound UBm10

Equation (2.6) states that the maximum number of m10 is equal to the minimum between M, meaning
that all the edges are m10 and thus there are no adjacent n1, and the number of edges within a set of n1

stars of degree n0 (or n0 stars of degree n1).
In more detail, the second element in the upper bound formula implies that all the n1 nodes are

arranged in order to be the central nodes of a set of stars Sn0+1 with non-adjacent central vertices and of
degree n0, or vice versa.

Proposition 3.2 Let us consider the degree sequence DG of the graph G with n1 nodes having the
characteristic equal to 1. The upper bound UBm10 on the number of edges m10 is:

UBm10 = min

⎛
⎜⎝M, n1n0, min

⎛
⎜⎝ ∑

i∈DH
G (n1)

min(di, n0),
∑

i∈DH
G (n0)

min(di, n1)

⎞
⎟⎠

⎞
⎟⎠ (3.2)

Proof. If the graph G can contain n1 stars Sn0+1, i.e. in DG are present at least n1 elements with di ≥ n0

then the maximum number of stars is theoretically allowed and the bound given in [30] can be considered
the tightest. Otherwise if such stars do not exist we can take into account the set of stars that is actually
realizable using the degree sequence of G.

Clearly, the same reasoning can be applied when considering n0 instead of n1. For any fixed n1, stars
can be realized with all the central nodes having the characteristic ci = 1 and the other elements having
ci = 0 and vice versa.

When maximizing m10, we ask for the set of stars with non-adjacent central nodes that brings m11 to
be the minimum, i.e. equal to 0. Under these considerations, we are faced with three different situations:
n1 < n0, n1 > n0 and n1 = n0.

1. Suppose that n1 < n0.

In this case, we can partition the degree sequence of G as DG = DH
G(n1) ∪ DT

G(n0) or as DG =
DH

G(n0) ∪ DT
G(n1) (see Fig. 2).

When DG = DH
G(n1) ∪ DT

G(n0), the elements in DH
G(n1) show a number of stubs equal to the sum of

their degree that, in order to realize edges m10, have to find their endpoints in DT
G(n0). Three cases

are admissible:

• ∑
i∈DH

G (n1) di = ∑
i∈DT

G(n0) di: all stubs in DH
G(n1) have an endpoint in DT

G(n0). In this case the

realization on DG has M = m10 = ∑
i∈DH

G (n1) di.

• ∑
i∈DH

G (n1) di <
∑

i∈DT
G(n0) di: all stubs in DH

G(n1) have an endpoint in DT
G(n0) but some stubs in

DT
G(n0) remain free. In this case, the realization on DG has m10 = ∑

i∈DH
G (n1) di, while M contains

some m00.

• ∑
i∈DH

G (n1) di >
∑

i∈DT
G(n0) di: not all stubs in DH

G(n1) have an endpoint in DT
G(n0). In this case, the

realization DG has all stubs in DT
G(n0) saturated while some residual stubs in DH

G(n1) can create
edges between those nodes not involved in stars. In this case, m11 may be different to zero and
an overestimation is m10 = ∑

i∈DH
G (n1) di.

Downloaded from https://academic.oup.com/comnet/article-abstract/5/5/694/3078584/Structural-bounds-on-the-dyadic-effect
by Universite catholique de Louvain user
on 04 October 2017



704 M. CINELLI ET AL.

When DG = DH
G(n0) ∪ DT

G(n1) three cases can be discussed:

• ∑
i∈DH

G (n0) di = ∑
i∈DT

G(n1) di: since n0 is greater than n1 and DG is in non-increasing order, this
case is not admissible.

• ∑
i∈DH

G (n0) di <
∑

i∈DT
G(n1) di: again, this case is not admissible for the same reason as above.

• ∑
i∈DH

G (n0) di >
∑

i∈DT
G(n1) di: not all stubs in DH

G(n0) have an endpoint in DT
G(n1). In this case,

the realization on DG has all stubs in DT
G(n1) saturated while some residual stubs in DH

G(n0) can
create edges that increase the number of m00. Thus, an overestimation is m10 = ∑

i∈DH
G (n0) di.

Summarizing, we provided certain overestimations on the number of m10 and the minimum among
them is our upper bound when n1 < n0.

2. Suppose that n1 > n0.

In this case, we can partition the degree sequence of G as DG = DH
G(n0) ∪ DT

G(n1) or as DG =
DH

G(n1) ∪ DT
G(n0) (see Fig. 3) and all the same considerations of above can be repeated, using

caution to invert n0 and n1. Again, we obtain certain overestimations on the number of m10 and the
minimum among them is our upper bound.

3. Suppose that n1 = n0

Then in this case DG = DH
G(n1) ∪ DT

G(n0) = DH
G(n0) ∪ DT

G(n1). Considering the first partition, three
situation can be discussed:

• ∑
i∈DH

G (n1) di = ∑
i∈DT

G(n0) di: this happens only when G is regular.

• ∑
i∈DH

G (n1) di <
∑

i∈DT
G(n0) di: this case is not admissible.

• ∑
i∈DH

G (n1) di >
∑

i∈DT
G(n0) di: not all stubs in DH

G(n1) have an endpoint in DT
G(n0). In this case,

the realization on DG has all stubs in DT
G(n0) saturated while some residual stubs in DH

G(n1) can
create edges between nodes not involved in stars. In this case, m11 can be different to zero and
an overestimation is m10 = ∑

i∈DH
G (n1) di.

Such considerations can be repeated for the second partition of DG.

Moreover, knowing the size of the two partitions, we can further bound the introduced quantities and,
consequently, m10. Indeed, in order to realize m10, each element in DH

G(n1) or DT
G(n1) can be connected at

most to n0 others while each element in DH
G(n0) or DT

G(n0) can be connected at most to n1 others. Thus
every di ≥ n0 in DH

G(n1) or DT
G(n1) is actually bounded by n0 while every di ≥ n1 in DH

G(n0) or DT
G(n0) is

actually bounded by n1; furthermore the residual degree of each di does not contribute to the formation
of m10.

Finally, the value for the upper bound on the number of m10 can be written as in formula (3.2). �

3.3 Lower bound LBm11

We propose a lower bound of m11, observing under which conditions a hypothetical graph realization of
DG exists that contains at least some m11. Such quantity is considered as an underestimation of m11 in the
original G.
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Proposition 3.3 Let us consider the degree sequence DG of the graph G with n1 nodes having the
characteristic equal to 1. The lower bound LBm11 on the number of edges m11 is:

LBm11 = max

(
0,

⌊∑
i∈DT

G(n1) di − ∑
i∈DH

G (n0) di

2

⌋)
(3.3)

Proof. Given n1, let consider again the two possible partitions of the degree sequence DG = DH
G(n1) ∪

DT
G(n0) = DH

G(n0) ∪ DT
G(n1). The following three cases hold for n1 � n0:

• ∑
i∈DH

G (n1) di = ∑
i∈DT

G(n0) di or
∑

i∈DH
G (n0) di = ∑

i∈DT
G(n1) di: when admissible, stubs have endpoints in

different partitions and M = m10; thus, m11 = 0.

• ∑
i∈DH

G (n1) di <
∑

i∈DT
G(n0) di or

∑
i∈DH

G (n0) di >
∑

i∈DT
G(n1) di: when admissible, there is no room for

residual degree in the partition of nodes with the characteristic ci = 1; thus, m11 = 0.

• ∑
i∈DH

G (n1) di >
∑

i∈DT
G(n0) di or

∑
i∈DH

G (n0) di <
∑

i∈DT
G(n1) di: when admissible, some stubs in the

partition of nodes with the characteristic ci = 1 can link among themselves.

The third case can happen when
∑

i∈DH
G (n1) di − ∑

i∈DT
G(n0) di > 0 or

∑
i∈DT

G(n1) di − ∑
i∈DH

G (n0) di > 0.
Note that, since we are searching for the minimum number of stubs able to make m11 �= 0 and that for any
given n1

∑
i∈DH

G (n1) di ≥ ∑
i∈DT

G(n1) di, we can restrict our analysis to the cases when DG = DH
G(n0)∪DT

G(n1).
Therefore, a lower bound on the number of m11 is given by selecting the maximum value between 0 and
an underestimation of the possible edges created in the partition DT

G(n1), such as in formula (3.3).
�

3.4 Lower bound LBm10

When n1 = 0 or n1 = N , the number of m10 is trivially 0. In all other cases, any possible connected
realization of DG contains at least an edge with endpoints with different characteristics, i.e. m10 ≥ 1.

In order to discuss a lower bound on m10 that, in some cases, overcomes the given inequality from
above, we take into account certain arguments based on the realizability of a complete, or at least densest,
subgraph from DG, similarly to as in Section 3.1.

Proposition 3.4 Let us consider the degree sequence DG of the graph G with n1 nodes having the
characteristic equal to 1. The lower bound LBm10 on the number of edges m10 is:

LBm10 =
⎧⎨
⎩

0 if n1 = 0, N

max

(
1;

∑
i∈DT

G(n1) di − n1(n1 − 1)

)
if n1 ∈ (0, N)

(3.4)

Proof. When n1 ∈ (0, N) we distinguish two cases determined by whether DG contains n1 nodes of
degree at least n1 − 1 that allows for a realization of a clique Kn1 .

1. DG does not contain n1 nodes of degree at least n1 − 1.

In this case, we can suppose that the densest hypothetical realization of a simple graph involving
the maximum number of stubs is the same as in the second case of the proof of Proposition 3.1.
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Such realization contains the maximum number of m11 and at least one residual stub has to find
its endpoint in one of the nodes of the remaining part of DG because any realization should be
connected. Therefore, this case leads us to consider m10 = 1.

2. DG contains n1 nodes of degree at least n1 − 1.

In this case it can hypothetically realize Kn1 . In order to search for a lower bound on m10, we take
into account the subsequence in DG which contains the minimum number of stubs, i.e. DT

G(n1).

If a clique can be realized within DT
G(n1), then m10 = ∑

i∈DT
G(n1) di − n1(n1 − 1). Indeed, every

stub that constitutes the residual degree will find its endpoint in a node with ci = 0. Otherwise,∑
i∈DT

G(n1) di < n1(n1 − 1), a clique cannot be realized and m10 = 1. �

3.5 Bounds implications on dyadic effect and its applications

In Section 2.3, we introduced range values for D and H and their relationships with the corresponding
upper bounds. Since we defined two new formulas for UBm11 and UBm10, Dmax and Hmax may assume lower
values. Moreover, the introduction of LBm11 and LBm10 results in the definition of two new quantities,
i.e. Dmin = LBm11/m11 and Hmin = LBm10/m10. Thus, we can state that:

Proposition 3.5 Given a simple graph G with n1 nodes having the characteristic equal to 1, the dyadic
effect is bounded as follow: Dmin ≤ D ≤ Dmax and Hmin ≤ H ≤ Hmax.

This proposition has a main implication. Indeed, since the dyadic effect has been used to quantify
homophily, the proposition sets the bounds on nodes tendency to connect with others similar to themselves
by using information on the network itself instead of a priori combinatorial arguments. In fact, the bounds
presented in [30] are valid for every graph of N nodes, M edges and a fixed integer n1, while the bounds
presented in Section 3 depend on the graphic sequence of the given graph, thus are valid for the set of
all graphs having the same DG. Such set is still wide but has a tighter relationship with the graph under
observation.

Regarding the applications, when a network and a set of characteristics are given, it is straightforward
to compute for each characteristic the point of maximum degeneration D = H = 1, the values D, H
and through the use of the four bounds, Dmin, Dmax, Hmin and Hmax. This approach can be useful in many
applications, such as in [20–22] and [34] where the phase diagram is hard to compute. In such contexts,
statistical approaches are used to gather information on the correlation between nodes characteristics and
the network topology by looking for the relative distance of the point (D, H) from the point of maximum
degeneration.

The introduction of the new bounds makes any comparison within the two dimensional space, defined
originally in [30] and improved in the previous section, more reliable as they are performed on measures
that are deeply related to the structure of the analysed graph.

4. Empirical evidence

Herein, we show empirical evidence computing upper and lower bounds as presented in Section 3 for
different networks. In particular, we extensively study the test graph given in Fig. 5 in order to provide
an evaluation of the feasible region reductions, then we provide results on different instances in order to
observe the behaviour of different bounds.
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Fig. 8. m11 and m10 values as a function of the fraction of n1 nodes on N .

Fig. 9. Areas computed with old and new bounds as a function of n1 nodes on N (x axis). The y and z axes represent m11 and m10
respectively.

The data processing, network analysis and all simulations were performed using the software R [31]
with the igraph package [6].

All analysis has been conducted considering the given graph G with N nodes and M edges and the value
of n1 ranging from 0 to N . Values of m11 and m10 were computed straightforwardly and independently of
N by means of formulas (2.1) and (2.2) and Fig. 8 shows their values as a function of the fraction of n1

nodes on N and for different values of the density δ.

4.1 Analysis of the test graph

We begin by illustrating the shrinkage of the area in which the phase diagram lies by using the test graph
with N = 25 and M = 32. The areas in Fig. 9 represent the sequence of feasible regions for n1 varying
from 0 to N , each bounded by the correspondent values of UBm10, LBm10, UBm11 and LBm11. Comparing
the areas in Fig. 9, we can immediately notice the difference between the feasible regions provided by
old and new bounds as well as the consequent improvements mostly appreciable for high and low values
of n1. In Fig. 9, we observe how, by applying the bounds, the feasible region changes together with the
various shapes of the N + 1 phase diagrams as shown in Fig. 7. Moreover, the areas evolve following a
trajectory which reflects the trend observed in the curves of the expected values of m11 and m10 in Fig. 8.
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Fig. 10. Clockwise representation of the gain deriving from the application of UBm11, UBm10, LBm11, LBm10 as a function of n1
nodes on N = 1000, 3000. Average degree was set to 〈d〉 = 6.

4.2 Analysis of benchmark instances

We applied the proposed bounds to three classes of networks of various size according to their degree
distribution choosing Erdős and Rényi random graphs ([12]), scale-free networks [1] and regular graphs.
For the first two classes, we generated ten instances with same degree distribution, since the bounds
provide identical results for each realization of the same degree sequence. Thus, with 10 different degree
sequences we study the gain on a set of similar, but slightly different, DG. When computing the gain,
differences among instances result attenuated and, finally, the average try to catch the real behaviour of
the system.

We considered networks with N = 1000 and 3000 with two different settings: the first with an average
degree 〈d〉 = 6; the second having a density δ = 0.9. In addition, for each setting we included regular
graphs. The first setting was considered in order to perform an analysis similar to [30] while the second
setting was chosen in order to test bounds that require DG from dense graphs.

The curves in Fig.10 shows the percentage gain obtained from applying each new bound from the
perspective of the area covered by the feasible region, with respect to the bounds in formula (2.5) and (2.6)
when 〈d〉 = 6. This kind of analysis allows us to estimate the bound behaviour and the dependency of the
gain for different networks types. Indeed, we can firstly observe how, fixed the mean degree, the networks
size do not affect the bounds as behave exactly the same, while the value of n1 acts as a threshold to
trigger the bounds. Indeed, upper bounds of formulas (3.1) and (3.2) have a non-homogeneous behavior
and for some values of n1 tend to get closer to the values achieved by the bound in formulas (2.5) and
(2.6).

Through observing the analytical relationships referred the upper bounds, it is evident that homo-
geneous DG tends to perform better, while those of a more heterogeneous nature such as, for instance,
scale-free networks, perform slightly worse due to the deviation of some nodes from the mean degree.

Lower bound LBm11 evaluation can be performed using a similar approach as for the upper bounds.
Note that we cannot make any comparisons with previous results being implicitly set to 0 in [30].
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Fig. 11. Clockwise representation of the gain deriving from the application of UBm11, UBm10, LBm11, LBm10 as a function of n1
nodes on N = 1000, 3000. Density was set to δ = 0.9.

LBm10 gives a contribution that can be considered close to zero due to the fact that it is computed as
the difference between the tail of DG and the edges within Kn1 . Indeed, when 〈d〉 = 6 we deal with very
sparse graph, thus the latter difference is always negligible.

We tuned the density to high values (δ = 0.9) since the terms in LBm10 formula depend on high degree
elements within DG. Fig. 11 shows the gain obtained through the introduction of new bounds for both
Erdős-Rényi and regular graphs. Scale-free networks were omitted in the test as they are characterized
by low density values [9].

In this case, the impact of both lower bounds is more significant, particularly for LBm10 which differs
to zero most substantially when N grows. Indeed, as we noticed before, all the bounds depend on the
mean degree 〈d〉. Therefore, to keep the value of the density δ while increasing the network size, implies
the growth of the mean degree as well, since 〈d〉 = δ(N − 1). Comparing the curves in Figure 11 it is
evident that when the value of N is higher, the impact of the upper bounds tends to be more negligible
since their gain is substituted by that of the lower bounds. Finally, the performed analysis reinforces the
importance of introducing lower bounds, especially when dealing with dense graphs.

5. Conclusions

In this article, we developed two upper bounds and two lower bounds in order to reduce the area of the
two dimensional space used to represent the feasible region of the dyadic effect in a network with certain
nodes characteristics. Using commonly accepted structural principles, we improved the upper bounds
and provided two new lower bounds. The four bounds can be computed using straightforward analytical
relationships with no restrictions on either the network size or classes with the only limitation for the
graph to be simple. The computational analysis of various classes of networks resulted in behavioural
differences depending on the inner structure and on the shape of the degree sequence.
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These results are particularly relevant in applications where large networks are investigated and
numerous characteristics are taken into account as a way of making valid hypotheses on which has been
more significant in determining the observed topology. Under these circumstances, the maximum and
minimum values of dyadicity and heterophilicity act as a threshold for the computation of efficient and
tight relative measures. This kind of approach is able to provide an informative content which represents
a reasonable alternative to the one of a complete enumeration in a less onerous way.

Further research should be devoted to study additional aspects. In particular, the asymptotic behaviour
of each bound when the network size grows should be considered. Another point of interest would be
to improve the bounds using further arguments, especially in the case of scale-free networks where the
proposed approach have seemed to perform less effectively.

Finally, considering the strict relationship between assortative mixing and dyadic effect, the proposed
bounds and their implications could lay the bases for possible reformulations and improvements of the
metrics related to the study of assortative mixing as well as for other potential studies in such direction.
For instance, one could be interested in further investigating the nexus between the assortativity and the
presence of different values of dyadicity and heterophilicity. Finally it would be interesting to study how
the presence of large groups and communities of featured nodes shapes the phase diagram contained in
the region determined by the new bounds that we introduced. Furthermore, the use of local substructures
as triangles or motifs, together with a more detailed analysis of the neighbourhood of each node, could
be investigated to improve the quality of our bounds. Taking into account the wide range of applications
of the presented bounds it is worth to consider the trade-off between their usefulness and tightness.
Indeed, future refinements should lead to tighter bounds exploiting topological aspects beyond the degree
sequence still maintaining their applicability.
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